2000;118(4):511C518

2000;118(4):511C518. lowering targets, prospective neuroprotective interventions, and finally possible neuroregenrative strategies. and Brain Res. 2008;1226:226C233. doi:?10.1016/j.brainres.2008.06.026. [PubMed] [CrossRef] [Google Scholar] 109. McKinnon S.J. The cell and molecular biology of glaucoma: common neurodegenerative pathways and relevance to glaucoma. Invest. Ophthalmol. Vis. Sci. 2012;53(5):2485C2487. doi:?10.1167/iovs.12-9483j. [PubMed] [CrossRef] [Google Scholar] 110. Agarwal R., Agarwal P. Glaucomatous neurodegeneration: an eye on tumor necrosis factor-alpha. Indian J. Ophthalmol. 2012;60(4):255C261. doi:?10.4103/0301-4738.98700. [PMC free article] [PubMed] [CrossRef] [Google Scholar] 111. Tezel G. TNF-alpha signaling in Satraplatin glaucomatous neurodegeneration. Prog. Brain Res. 2008;173:409C421. [PMC free article] [PubMed] [Google Scholar] 112. Fontaine V., Mohand-Said S., Hanoteau N., Fuchs C., Pfizenmaier K., Eisel U. Neurodegenerative and neuroprotective effects of tumor Necrosis factor (TNF) in retinal ischemia: opposite roles of TNF receptor 1 and TNF receptor 2. J. Neurosci. 2002;22(7):RC216. [PMC free article] [PubMed] [Google Scholar] 113. Lebrun-Julien F., Bertrand M.J., De Backer O., Stellwagen D., Morales C.R., Di Polo A., Barker P.A. ProNGF induces TNFalpha-dependent death of retinal ganglion cells through a p75NTR non-cell-autonomous signaling pathway. Proc. Natl. Acad. Sci. USA. 2010;107(8):3817C3822. doi:?10.1073/pnas.0909276107. [PMC free article] [PubMed] [CrossRef] [Google Scholar] 114. Nakazawa T., Nakazawa C., Matsubara A., Noda K., Hisatomi T., She H., Michaud N., Hafezi-Moghadam A., Miller J.W., Benowitz L.I. Tumor necrosis factor-alpha mediates oligodendrocyte death and delayed retinal ganglion cell loss in a mouse model of glaucoma. J. Neurosci. 2006;26(49):12633C12641. doi:?10.1523/JNEUROSCI.2801-06.2006. [PMC free article] [PubMed] [CrossRef] [Google Scholar] 115. Tezel G., Yang X., Yang J., Wax M.B. Role of tumor necrosis factor receptor-1 in the death of retinal ganglion cells following optic nerve crush injury in mice. Brain Res. 2004;996(2):202C212. doi:?10.1016/j.brainres.2003.10.029. [PubMed] [CrossRef] [Google Scholar] 116. Ahmed Z., Aslam M., Lorber B., Suggate E.L., Berry M., Logan A. Optic nerve and vitreal inflammation are both RGC neuroprotective but only the latter is RGC axogenic. Neurobiol. Dis. 2010;37(2):441C454. doi:?10.1016/j.nbd.2009.10.024. [PubMed] [CrossRef] [Google Scholar] 117. Roh M., Zhang Y., Murakami Y., Thanos A., Lee S.C., Vavvas D.G., Benowitz L.I., Miller J.W. Etanercept, a widely used inhibitor of tumor necrosis factor- (TNF-), prevents retinal ganglion cell loss in a rat model of glaucoma. PLoS One. 2012;7(7):e40065. doi:?10.1371/journal.pone.0040065. [PMC free article] [PubMed] [CrossRef] [Google Scholar] 118. Dong C-J., Guo Y., Agey P., Wheeler L., Hare W.A. Alpha2 adrenergic modulation of NMDA receptor function as a major mechanism of RGC protection in experimental glaucoma and retinal excitotoxicity. Invest. Ophthalmol. Vis. Sci. 2008;49(10):4515C4522. doi:?10.1167/iovs.08-2078. [PubMed] [CrossRef] [Google Scholar] 119. Pan Y-Z., Li D-P., Pan H-L. Inhibition of glutamatergic synaptic input to spinal lamina II(o) Satraplatin neurons by presynaptic alpha(2)-adrenergic receptors. J. Neurophysiol. 2002;87(4):1938C1947. [PubMed] [Google Scholar] 120. Hong S., Park K., Kim C.Y., Seong G.J. Agmatine inhibits hypoxia-induced TNF-alpha release from cultured retinal ganglion cells. Biocell. 2008;32(2):201C205. [PubMed] [Google Scholar] 121. Hong S., Kim C.Y., Lee W.S., Shim J., Yeom H.Y., Seong G.J. Ocular hypotensive effects of topically administered agmatine in a chronic ocular hypertensive rat model. Exp. Eye Res. 2010;90(1):97C103. doi:?10.1016/j.exer.2009.09.016. [PubMed] [CrossRef] [Google Scholar] 122. Garca E., Silva-Garca R., Mestre ENOX1 H., Satraplatin Flores N., Marti?n S., Caldern-Aranda E.S., Ibarra A. Immunization with A91 peptide or copolymer-1 reduces the production of nitric oxide and inducible nitric oxide synthase gene expression after spinal cord injury. J. Neurosci. Res. 2012;90(3):656C663. doi:?10.1002/jnr.22771. [PubMed] [CrossRef] [Google Scholar] 123. Schori H., Kipnis J., Yoles E., WoldeMussie E., Ruiz G., Wheeler L.A., Schwartz M. Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular.